The growth temperature is estimated by approximating the diurnal temperature cycle with a sine curve, where daylight hours are determined by the day-of-year and latitude following (Jones, 2013).

calc_tgrowth(tmin, tmax, lat, doy)

Arguments

tmin

Minimum daily temperature (degrees Celsius)

tmax

Maximum daily tempearture (degrees Celsius)

lat

Latitude (degrees)

doy

Day of year (integer between 1 and 365)

Value

Growth temperature (degrees Celsius), a numeric value. Growth temperature is calculated as

$$ T_g = T_\text{max} \left( 1/2 + (1 – x^2)^{1/2}/(2 \cos^{–1} x) \right) + T_\text{min} \left( 1/2 – (1 – x^2)^{1/2}/(2 \cos^{–1} x) \right) $$ with $$ x = – \tan \lambda \; \tan \delta $$ where \(\lambda\) is latitude and \(\delta\) is the solar declination angle. The solar declination angle is calculated as described in Davis et al., 2017.

References

Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model. Dev. 10, 689–708 (2017).

Jones, H. G. (2013). Plants and microclimate: a quantitative approach to environmental plant physiology. In Cambridge University Press.

Examples

if (FALSE) { # \dontrun{
  tgrowth <- calc_tgrowth(
   tmin = 10.0,
   tmax = 30.0,
   lat = 23.5,
   doy = 180 )
} # }