3 Public data sources
Here we introduce a set of data sources to kick-start your projects. Some of these datasets are very general and will be used for multiple applications, while others contain more niche data that may spark ideas for a course project.
Below you’ll find a list of useful datasets in no particular order, with brief descriptions and links to the data and its documentation (follow the references for more details). This list is inspired by what we commonly use for research in the group for Geocomputation and Earth Observation. Of course, there are a thousand other datasets out there!
This table from the AGDS book contains some widely used environmental data repositories, which ensure long-term storage of diverse data. You can browse through their websites to search for data that you are missing for your project implementation, if you can’t find it below.
Although all of the following datasets are publicly available, a fraction of them will require you to create an account in the data provider’s website and log in to download the files.
ACi-TGlob_V1.0: A Global dataset of photosynthetic CO2 response curves of terrestrial plants
Kumarathunge, Medlyn, Drake, Tjoelker et al 2018. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. (New Phytologist) https://doi.org/10.1111/nph.15668
Global above-ground biomass carbon (Liu et al. 2015)
Liu, Y.Y., A.I.J.M. van Dijk, R.A.M. de Jeu, J.G. Canadell, M.F. McCabe, J.P. Evans and G. Wang (2015) Recent reversal in loss of global terrestrial biomass, Nature Climate Change 5, doi: 10.1038/NCLIMATE2581.
http://wald.anu.edu.au/data_services/data/global-above-ground-biomass-carbon-v1-0/
Climate Change Initiative Biomass
Santoro, M.; Cartus, O. (2021): ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the years 2010, 2017 and 2018, v3. NERC EDS Centre for Environmental Data Analysis, 26 November 2021. doi:10.5285/5f331c418e9f4935b8eb1b836f8a91b8.
https://catalogue.ceda.ac.uk/uuid/5f331c418e9f4935b8eb1b836f8a91b8
C4 vegetation percentage
Still, C.J., J.A. Berry, G.J. Collatz, and R.S. DeFries. 2009. ISLSCP II C4 Vegetation Percentage. In Hall, Forrest G., G. Collatz, B. Meeson, S. Los, E. Brown de Colstoun, and D. Landis (eds.). ISLSCP Initiative II Collection. Data set. Available on-line [http://daac.ornl.gov/] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAC/932
CRU TS4.05 global monthly climate
University of East Anglia Climatic Research Unit; Harris, I.C.; Jones, P.D.; Osborn, T. (2021): CRU TS4.05: Climatic Research Unit (CRU) Time-Series (TS) version 4.05 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2020). NERC EDS Centre for Environmental Data Analysis, date of citation. https://catalogue.ceda.ac.uk/uuid/c26a65020a5e4b80b20018f148556681
Sulphur and nitrogen deposition in Europe
- Magnuz Engardt, David Simpson, Margit Schwikowski & Lennart Granat (2017) Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations, Tellus B: Chemical and Physical Meteorology, 69:1, DOI: 10.1080/16000889.2017.1328945 (https://doi.org/10.1080/16000889.2017.1328945)
- https://zenodo.org/record/4501636#.YzcRcOyA6rM
ETOPO1 Global Digital Elevation Model
NOAA National Geophysical Data Center. 2009: ETOPO1 1 Arc-Minute Global Relief Model. NOAA National Centers for Environmental Information. Accessed [date].
Amante, C. and B.W. Eakins, 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. doi:10.7289/V5C8276M [access date]
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.dem:316
FLUXNET2015: Ecosystem flux measurements
Pastorello, G., Trotta, C., Canfora, E. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci Data 7, 225 (2020). https://doi.org/10.1038/s41597-020-0534-3
Global Forest Age
Poulter, Benjamin; Aragão, Luiz; Andela, Niels; Bellassen, Valentin; Ciais, Philippe; Kato, Tomomichi; Lin, Xin; Nachin, Baatarbileg; Luyssaert, Sebastiaan; Pederson, Niel; Peylin, Philippe; Piao, Shilong; Pugh, Tom; Saatchi, Sassan; Schepaschenko, Dmitry; Schelhaas, Martjan; Shivdenko, Anatoly (2019): The global forest age dataset and its uncertainties (GFADv1.1). NASA National Aeronautics and Space Administration, PANGAEA, https://doi.org/10.1594/PANGAEA.897392
Downscaled GOME-2 Sun-induced fluorescence
Duveiller, G., Filipponi, F., Walther, S., Köhler, P., Frankenberg, C., Guanter, L., and Cescatti, A.: A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity, Earth Syst. Sci. Data, 12, 1101–1116, https://doi.org/10.5194/essd-12-1101-2020, 2020.
https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/ECOCLIM/Downscaled-GOME2-SIF/v2.0/
GOSIF: A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data
Li, X., Xiao, J. (2019) A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sensing, 11, 517; doi:10.3390/rs11050517. [https://www.mdpi.com/2072-4292/11/5/517]
G-RUN: Global Runoff Reconstruction
Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.: GRUN: an observation-based global gridded runoff dataset from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019, 2019.
https://figshare.com/articles/dataset/GRUN_Global_Runoff_Reconstruction/9228176
Global Topographic Index
Marthews, T. R., Dadson, S. J., Lehner, B., Abele, S., and Gedney, N.: High-resolution global topographic index values for use in large-scale hydrological modelling, Hydrol. Earth Syst. Sci., 19, 91–104, https://doi.org/10.5194/hess-19-91-2015, 2015.
https://doi.org/10.5285/6b0c4358-2bf3-4924-aa8f-793d468b92be
Harmonized World Soil Database
- FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.
- https://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html
Global Map of Irrigation Areas
- Siebert, S., Döll, P., Hoogeveen, J., Faures, J.-M., Frenken, K., Feick, S. (2005): Development and validation of the global map of irrigation areas. Hydrology and Earth System Sciences, 9, 535-547. (http://www.fao.org/3/I9245EN/i9245en.pdf)
- http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/latest-version/
Köppen-Geiger climate classification maps
- Beck, H.E., N.E. Zimmermann, T.R. McVicar, N. Vergopolan, A. Berg, E.F. Wood: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Scientific Data 5:180214, doi:10.1038/sdata.2018.214 (2018).
- https://doi.org/10.6084/m9.figshare.6396959
WISE Soil Property Databases
- Batjes NH 2016. Harmonised soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 2016(269), 61-68 ( http://dx.doi.org/10.1016/j.geoderma.2016.01.034 , with supplemental information (ISRIC Report 2015/01)).
- https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/dc7b283a-8f19-45e1-aaed-e9bd515119bc
Global 1-km Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers
- Pelletier, J.D., P.D. Broxton, P. Hazenberg, X. Zeng, P.A. Troch, G. Niu, Z.C. Williams, M.A. Brunke, and D. Gochis. 2016. Global 1-km Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1304https://doi.org/10.1002/2015MS000526
- https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1304
GSDE - The Global Soil Dataset for Earth System Modeling
- Shangguan, W., Dai, Y., Duan, Q., Liu, B. and Yuan, H., 2014. A Global Soil Data Set for Earth System Modeling. Journal of Advances in Modeling Earth Systems, 6: 249-263 . https://doi.org/10.1002/2013MS000293
- http://globalchange.bnu.edu.cn/./research/soilw
Epica Dome C temperature reconstruction
- Jouzel, J., et al. 2007. EPICA Dome C Ice Core 800KYr Deuterium Data and Temperature Estimates. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2007-091. NOAA/NCDC Paleoclimatology Program, Boulder CO, USA.Jouzel, J., et al. 2007. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science, Vol. 317, No. 5839, pp.793-797, 10 August 2007.
- http://www.ncdc.noaa.gov/paleo/icecore/antarctica/domec/domec_epica_data.html
PAGES2k Global Common Era Mean Surface Temperature Reconstructions
- PAGES 2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649 (2019). https://doi.org/10.1038/s41561-019-0400-0PAGES 2k Consortium: Raphael Neukom, Luis A. Barboza, Michael P. Erb, Feng Shi, Julien Emile-Geay, Michael N. Evans, Jörg Franke, Darrell S. Kaufman, Lucie Lücke, Kira Rehfeld, Andrew Schurer, Feng Zhu, Stefan Brönnimann, Gregory J. Hakim, Benjamin J. Henley, Fredrik Charpentier Ljungqvist, Nicholas McKay, Veronika Valler & Lucien von Gunten
- https://www1.ncdc.noaa.gov/pub/data/paleo/pages2k/neukom2019temp/
Global tree height
- Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021 (2011) https://doi.org/10.1029/2011JG001708
- https://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10023
WATCH-WFDEI meteorological forcing dataset
- Weedon, G. P., G. Balsamo, N. Bellouin,S. Gomes, M. J. Best, and P. Viterbo(2014), The WFDEI meteorologicalforcing data set: WATCH Forcing Datamethodology applied to ERA-Interimreanalysis data,Water Resour. Res.,50,7505–7514, doi:10.1002/2014WR015638.
- <ftp://ftp.iiasa.ac.at (access with lftp)>
WorldClim
- Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.
- https://www.worldclim.org/data/index.html
Integrated Climate Data Center (ICDC)
Kern, S., V. Gouretski, A. Jahnke-Bornemann, R. Sadikni, F. Ament, and D. Stammer, 2015. The Integrated Climate Data Center at the Center for Earth System Research and Sustainability (CEN), University of Hamburg. DOI:10.13140/RG.2.1.1705.0086
SoilGrids - Global gridded soil information
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. SOIL, 7(1), 217-240. DOI 10.5194/soil-7-217-2021
Regridded Harmonized World Soil Database
- Wieder, W.R., J. Boehnert, G.B. Bonan, and M. Langseth. 2014. Regridded Harmonized World Soil Database v1.2. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAC/1247 .
- https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247
Carbon Cycle Greenhouse Gases - Global Greenhouse Gas Reference Network
CMIP4 climate projections
- Copernicus Climate Change Service, Climate Data Store, (2021): CMIP6 climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.c866074c (Accessed on DD-MMM-YYYY)
- https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip6
WDPA: World Database on Protected Areas
- The World Database on Protected Areas (WDPA), [insert month/year of the version downloaded], Cambridge, UK: UNEP-WCMC and IUCN.
- https://www.protectedplanet.net/en/thematic-areas/wdpa?tab=WDPA
GLEAM: Global Land Evaporation Amsterdam Model
Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, doi: 10.5194/gmd-10-1903-2017, 2017
Miralles, D.G., Holmes, T.R.H., de Jeu, R.A.M., Gash, J.H., Meesters, A.G.C.A., Dolman, A.J.: Global land-surface evaporation estimated from satellite-based observations, Hydrology and Earth System Sciences, 15, 453–469, doi: 10.5194/hess-15-453-2011, 2011
HydroBASINS
- Lehner, B., Grill G. (2013). Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrological Processes, 27(15): 2171–2186. https://doi.org/10.1002/hyp.9740
- https://www.hydrosheds.org/products/hydrobasins
RCP Database